Smooth Trajectory Optimization in Wind: First Results on a Full-Scale Helicopter

نویسندگان

  • Vishal Dugar
  • Sanjiban Choudhury
  • Sebastian Scherer
چکیده

A significant challenge for unmanned aerial vehicles is flying long distances in the presence of wind. The presence of wind, which acts like a forcing function on the system dynamics, significantly affects control authority and flight times. While there is a large body of work on the individual topics of planning long missions and path planning in wind fields, these methods do not scale to solve the combined problem under real-time constraints. In this paper, we address the problem of planning long, dynamically feasible, time-optimal trajectories in the presence of wind for a full-scale helicopter. We build on our existing algorithm, κITE , which accounts for wind in a principled and elegant way, and produces dynamically-feasible trajectories that are guaranteed to be safe in near real-time. It uses a novel framework to decouple path optimization in a fixed ground frame from velocity optimization in a moving air frame. We present extensive experimental evaluation of κITE on an autonomous helicopter platform (with a human safety pilot in the loop) with data from over 23 missions in winds up to 20m/s and airspeeds up to 50m/s. Our results not only shows the efficacy of the algorithm and its implementation, but also provide insights into failure cases that we encountered. This paves the way forward for autonomous systems to exhibit pilot-like behavior when flying missions in winds aloft.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Helicopter Wind Envelope for Ship Operations

Launch and recovery helicopter wind envelope for a ship type was determined as the first step to the helicopter qualification program. Flight deck velocities data were obtained by means of a two components laser Doppler anemometer testing a 1/50 model in the wind tunnel stream. Full-scale flight deck measurements were obtained on board the ship using a sonic anemometer. Wind tunnel and full-sca...

متن کامل

Autonomous landing at unprepared sites by a full-scale helicopter

Helicopters are valuable since they can land at unprepared sites; however, current unmanned helicopters are unable to select or validate landing zones (LZs) and approach paths. For operation in unknown terrain it is necessary to assess the safety of a LZ. In this paper, we describe a lidar-based perception system that enables a full-scale autonomous helicopter to identify and land in previously...

متن کامل

Trajectory Planning Using High Order Polynomials under Acceleration Constraint

The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...

متن کامل

Optimization-based Inverse Simulation of a Helicopter Slalom Maneuver

This paper presents an inverse simulation methodology based on numerical optimization. The methodology is applied to a simplified version of the slalom maneuver in the ADS-33D helicopter handling qualities specifications. The inverse simulation is formulated as an optimization problem with trajectory and dynamic constraints, pilot inputs as design variables, and an objective function that depen...

متن کامل

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017